

The University of Jordan

Accreditation & Quality Assurance Center

COURSE Syllabus

<u>Course Name:</u> <u>Engineering Geology</u> <u>0345391</u>

1	Course title	Engineering Geology
2	Course number	0345391
3	Credit hours (theory, practical)	3 hours theory;
	Contact hours (theory, practical)	3 hours theory,
4	Prerequisites/corequisites	General Geology 0305101, Structural Geology 0305341, first year math, physics, and chemistry
5	Program title	Environmental and Applied Geology
6	Program code	
7	Awarding institution	The University of Jordan
8	Faculty	Faculty of Science
9	Department	Geology
10	Level of course	undergraduate
11	Year of study and semester (s)	2016-2017 Fall
12	Final Qualification	
13	Other department (s) involved in teaching the course	
14	Language of Instruction	English
15	Date of production/revision	April 2017

Academic standards

Engineering Geology is a science discipline. Our understanding of engineering geology is developed by adopting the scientific method whereby data is collected by investigation or observation and used to formulate and test hypotheses. It depends on scientists being objective and sharing all their data, methods and ideas with their peers, by publishing their findings. This allows other scientists to further analyse and build on this body of knowledge by which we learn about Engineering Geology. Professional scientists must always acknowledge their sources. **Plagiarism** is the presentation of thought or work of another person as though it is one's own without proper acknowledgment. The University's regulations make it clear that plagiarising is a breach of student discipline and may incur a range of penalties.

16. Course Coordinator: Dr. Fathi Shaqour

Office numbers, office hours, phone numbers, and email addresses should be listed. Sunday, Tuesday, and Thursday 11:00-12:00 f.shaqour@ju.edu.jo 00962798100473

17. Values/Attitudes

- Appreciate the role and importance of Geology in civil engineering.
- Conduct of professional standards.

18. Course Description:

Overview of the physical and engineering properties of soils and rocks; index geotechnical properties of rocks and soils: density, unit weight, porosity, void ratio, Atterburg limits of soils, relative density, and shear strength of soils and rocks; engineering soil and rock classification systems; natural hazards and their engineering significance; and slope stability. Mechanics of Earth materials and how they respond to forces and stresses, exploring in more physical detail the mechanics of rock, soils, and fluids, and how these relate to site vulnerabilities

19. Course aims and outcomes:

A- Aims:

Main aims of the course are the following:

- 1- To learn the basics of engineering geology,
- 2- To learn the index geotechnical properties of soils and rocks,
- 3- To gain knowledge of the engineering properties of rock types,
- 4- To learn engineering concepts of geological hazards (earthquakes, subsidence, coastal processes) and incorporate them in the engineering designs.
- 5- To gain appreciation to the importance of the geological factors in engineering designs.

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course students will be able to:

- Demonstrate an understanding of the terms, concepts and principles of engineering geology,
- Demonstrate an understanding of the Earth processes (earthquakes, volcanic activity, erosion and mass wasting) and their influence on the design of civil engineering projects.
- Develop professional skills in engineering geology,
- Develop understanding of rock types and engineering classifications of soils and rocks.
- Be aware of the role of geology in civil engineering design, construction and maintenance,
- Aply engineering principles on earth materials,

20. Outline and Schedule:

Week	Торіс
1	1- Introduction: discuss the syllabus, why study the course, General information
	2- The basics of engineering geology, its relationship with other disciplines
	especially civil engineering, terminology, the role of engineering geologist.
	3- Composition of Earth, plate tectonics, rock types with touches of engineering
	aspects
2	4- Rock types: classification, properties and identification
	5- Classification and properties of igneous rocks with engineering flavour
	6- Classification and properties of sedimentary rocks and metamorphic rocks
	with engineering flavour and spices
3	Engineering Soil: Types of soil and soil description,
	8- Engineering properties of soils: grain size, Atterberg limits with special
	emphasis on expansive soils and soil classification
4	9- Engineering properties of soils: strength properties
	10- Soil strength testing: direct shear,
	11- Soil strength testing: uniaxial compressive strength,
5	12- Soil strength testing: tri-axial compressive testing
	13- Discussions and problem solving on the engineering properties of soils
	14- First Exam
7	15- Index engineering properties of rocks
	16- Engineering properties of sedimentary rocks with emphasis on folds, faults
	and joints
	17- Engineering properties of igneous and metamorphic rocks
	18- Engineering classification of rocks -a
8	19- Engineering classification of rocks -b
	20- Construction Uses of rocks and soils: Aggregates
	21- Construction Uses of rocks and soils: Aggregates (continue)
	22- Riprap and other large rock materials
9	23- Engineering Geology and Earth processes: Safety, risk and geologic
	forecasting including earthquakes and volcanoes
	24- Landslides; types, causes and instability problems
	25- Land subsidence and subsurface openings, expansive soils and shorelines
10	processes 26- Site Investigation: Maps; topographic maps and features,
10	27- Remote sensing; satellite images and aerial photographs
	28- Geological maps and cross sections; elements, map reading and
	interpretations
11	29- Second Exam
	30- Site Investigation: Geophysical methods;
	31- Drilling; types of drilling and sampling (disturbed and undisturbed)
12	32- Site Investigation: (continue); laboratory testing
	33- Site Investigation: (continue); field testing; SPT, CPT, DCPT,
	34- Test data interpretations
13	35- Subsurface water: Occurrence of subsurface water, aquifers and aquitards,
	types of aquifers and groundwater movement
	36- Subsurface Water: Engineering significance and influence,
	37- Control of subsurface water: Barriers and liners, Dewatering, Drains & wells
4.4	
14	38- Engineering Geologic maps Revision and applications, Engineering Geologic

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following teaching and learning methods:

This course emphasizes the quantitative problem solving to gain a better understanding of geological materials and processes. Therefore, the student will be trained on that through independent and guided solution of problem sets that cover the various and most important aspects covered in the lecture.

22. Evaluation Methods and Course Requirements:

First Test	20%	Week 5	Assess a student's understanding, knowledge and competency of
Mid-term Test	30%	Week 11	theoretical concepts and practical aspects of the course material. Requirement : Set a written exam on the entire content of the course
Final Exam	50%	(Exam period)	Assessment Criteria: Correct answers, demonstration of understanding of concepts and principles
Total	100%		

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Discussion in the class, quizzes, quantitative problem solving and two midterm and a final exam

23. Course Policies:

A- Attendance policies: The rules of the University apply

B- Absences from exams and handing in assignments on time:

Assignments must be handed in on time.

C- Health and safety procedures:

D- Honesty policy regarding cheating, plagiarism, misbehavior:

The regulations of the University of Jordan are applicable

E- Grading policy: The final grade is based on the overall performance of the student to be deduced from

Interest in class through interaction; participation in quizzes, problem set solving and exams: Below is a tentative grading scale

A: 90-100

A-: 85-89

B+: 80-84

B: 75-79

B-: 70-74

C+: 65-69

C:60-64

C-: 55-59

D+: 50-54

D: 49-45

D-: 40-44

F: 0-39

F- Available university services that support achievement in the course:

24. Required equipment:

Laptop; data show and white board and whiteboard marker

25. References:

1) Principles of Engineering Geology, Robert B. Johnson and J.V.DeGraff, 1988 John Wiley (available in book shop); 2) *Engineering Geology, Richard E. Goodman, John Wiley 1993;* Check UJ library and Google books for other references. <u>http://books.google.com.au/books</u>

26. Additional information:

Engineering Geology Journals: Quaternary Journal of Engineering Geology Bulletin of Engineering Geology

Name of Course Coordinator: Signature: Date:
Head of curriculum committee/Department: Signature:
Head of Department: Signature:
Head of curriculum committee/Faculty: Signature:
Dean:

<u>Copy to:</u> Head of Department Assistant Dean for Quality Assurance Course File